Bubble Trap [CTQ-006BT] Remove Air Bubbles

Remove air bubbles from your system The microfluidic Bubble Trap from Fluigent is a device suitable for aqueous flows, perfectly designed to prevent air bubbles from entering a microfluidic system. By employing a nano-porous membrane within the trap and operating in a bubble-free microfluidic environment, it effectively prevents high flowrate instabilities, significant shear stress variations, and potential damage to the microfluidic system.

Why and how to use a microfluidic bubble trap

A microfluidic bubble trap is a device that is used to separate air bubbles from a liquid flow in microfluidic systems. Bubbles are generally undesirable in microfluidics, as even the smallest of them can completely ruin a biological or chemical experiment. They can damage cell membranes, disrupt droplet generation, block channels, prevent current conduction in a capillary, or sweep biological and chemical agents away. Bubbles can come from an inhomogeneous solution or from the presence of fluidic components with dead volumes, randomly getting in the fluidic path. Therefore, it is essential to remove these bubbles before they cause any damage, and adding a bubble remover to your microfluidic setup may be necessary to avoid endlessly repeating an experiment due to bubble-related damage.  

There are various ways to use a bubble remover, but the most common method involves using a hydrophobic micro-porous membrane (PTFE) that the liquid and air bubbles flow through. The hydrophobic surface repels the liquid, causing it to flow around the bubble and allowing the bubble to move freely towards the trap. The trap consists of a narrow channel where the bubble gets trapped and diverted to an area where it can be removed from the system. The narrow channel’s design ensures that the bubble is trapped, and the liquid can flow freely without any interference from the air bubble.

To use a debubbler, you need to ensure that it is properly integrated into your microfluidic system. This involves connecting the trap’s inlet and outlet channels to the main microfluidic channels, allowing the liquid to flow through the trap. It is important to note that the device’s efficiency depends on various factors such as the flow rate, the viscosity of the liquid, and the size of the air bubbles. Therefore, it is crucial to optimize these parameters for best results.

not sure what fits?

Let us help you

We love to solve this puzzle and find the right fit.
Heading for types of this product
Green Architecture
Evermind™ template is crafted like sustainable structures — clean, scalable, and built to last.
Precision Engineering
Every layout and component is tuned with variables and pixel-perfect details, so your brand stands on solid ground.
Dynamic Interactions
From nature-inspired transitions to fluid page structures, Evermind™ feels alive yet quietly sophisticated.
Green Architecture
Evermind™ template is crafted like sustainable structures — clean, scalable, and built to last.
Precision Engineering
Every layout and component is tuned with variables and pixel-perfect details, so your brand stands on solid ground.
Dynamic Interactions
From nature-inspired transitions to fluid page structures, Evermind™ feels alive yet quietly sophisticated.
No items found.
Related products
No items found.
Related News For this Product
No items found.
ready to start?
Stuck with a spec sheet that reads like sci-fi? Need a component that probably doesn't exist yet? Let's make it happen. Together.
FAQ

Questions, answered with clarity.

We’ve collected the questions we get all the time, and actually answered them. No mystery, no marketing poetry - just facts. Still have an open question? We're here to help:
Contact Us
Fluigent delivers cutting-edge pressure-based microfluidic flow control systems and sensors for research and industrial applications - delivering precise, stable, and reproducible fluid handling where microscale control matters

New Products
Facing a Challenge? Let’s Solve It Together